International E-publication: Publish Projects, Dissertation, Theses, Books, Souvenir, Conference Proceeding with ISBN.  International E-Bulletin: Information/News regarding: Academics and Research

Comparative Study of the Influence Effect of the Zinc Chloride (zncl2) and the Aluminium Chloride (alcl3) on the 1h-azirene Hydrochlorination

Author Affiliations

  • 1Laboratoire de Chimie Théorique et de Spectroscopie Moléculaire, Faculté des Sciences et Techniques, Université d’Abomey-Calavi, BENIN

Res.J.chem.sci., Volume 1, Issue (4), Pages 40-48, July,18 (2011)

Abstract

Hydrochlorination of 1H-azirene (CN) is modeled without catalyst and with two catalysts: alumina chloride (AlCl) and zinc chloride (ZnCl) respectively. The product of the reaction performed without catalyst is 2-chloroethanimine; the same product is obtained when the reaction performed on alumina chloride. With zinc chloride, the product of reaction is 2-chloroaziridine. On the basis of the calculations performed by HF, MP2 and DFT methods in lanl2dz basis set, a mechanism of each reaction has been proposed.

References

  1. Potapov V.P., Tataritchik S., Chimie Organique, Edition Mir, Moscou, 34,37,65,66, 74,161, 212 (1988)
  2. Freenentle M., Himiya v diéistvié, T. 2, Ed. Mir, Moscou., 440 (1991)
  3. Kuevi U.A. , Mensah J.B., N’guessan T.Y., Theoretical study of catalytical hydrohalogenation of 1H-azirene Theoretical Aspect of Catalysis, 45-57 Heron Press Science Series, Sofia, (2009)
  4. Chaquin T., Pratique de la chimie Théorique, InterEditions (1995)
  5. Melius C.F. and Goddard W.A., Ab initio effective potentials for use in molecular quantum mechanics,Phys. Rev.,A 10, 1528–1540 (1974)
  6. Kahn L.R., Baybutt P. and Truhlar D.G., Ab initio effective core potentials: reduction of all-electron molecular structure calculations to calculations involving only valence electrons, J. Chem. Phys.,65, 3826-3853 (1976)
  7. Becke A.D., Density-functional thermochemistry III. The role of exact exchange, J. Chem. Phys., 98(7), 5648–5652(1993)
  8. Lee C.T., Yang W.T., Parr R.G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev., B 37, 785–789 (1988)
  9. Pestman R., Koster R.M., Pieterse J.A.Z. and Ponec V., Reactions of Carboxylic Acids on Oxides 1. Selective Hydrogenation of Acetic Acid to Acetaldehyde,J. Catal.,168,255 (1997)
  10. Mensah J.B., Kuevi U., Atohoun G.Y.S., Etude Hartree-Fock de la denitrogénation catalytique de l’azirène et de l‘aziridine J. Soc., Ouest-Afr.Chim024, 35-44 (2007)
  11. Bart J.C.J., Ragaini V., Proceedings, Climax third International Conference on the the Chemistry and Uses of Molybdenum ( Barry H.F. and Mithell P.C.H. Eds), Climax Molybdenum Co Ann Arbor, Michigan, 19, (1979)
  12. Sieraalta A. and Ruette F., H interaction with S atoms of a MoS modelled catalytic site : electronic density analysis for S-H formation J. Mol. Catal. A. Chem.109(3), 227-238 (1996)
  13. Bader R.F.W., Atoms in molecules: a Quantum Theory, Clarendon Press, Oxford (1990)
  14. Protos J.; Coutrot P., Egali A., Chloro-2(nitro-3 phényl)-3 phényl-1 aziridinecarboxylate-2 de méthyle = Methyl 2-chloro-3(3-nitrophenyl)-1-phenyl-2-azidinecarboxylate Acta Cristallogr., Sect. C, Cryst. Struct. Commun 45(8), 1189-1192 (1989)
  15. Julia A. Aizina, Igor B. Rozentsveig, and Galina G. Levkovskaya, A novel synthesis of chloroacetamide derivatives via amidoalkylation of aromatics by2-chloro-2,2,2-trichloro-1-hydroxyethyl acetamide, Tetrhedon Lett.,46, 8889 (2005)